

# **Graph-based Editor for SWRL Rule Bases**

RuleML 2013 Challenge

Jaroslaw Bak, Maciej Nowak, Czesław Jedrzejek Institute of Control and Information Engineering Poznan University of Technology

#### **Outline**

- 1. Motivation
- 2. Graph-based Editor
- 3. Demo time!
- 4. Conclusions and Future Work

#### **Motivation**

- Ontologies and rules are too complex to handle by an ordinary user
- Rules written in declarative code are hard to read/write
- Decision tables and trees have different representation of facts and rules
- Graphs are easy-to-understand by an untrained user
- Integration of an ontology, rules and data in one graphbased form is convenient and understandable
- We want to provide an easy-to-use and easy-tounderstand tool, where ontologies, rules and graphs can support user's work

### **Graph-based Editor (1)**

- Represents ontology, rules and data as directed graphs
- Supports OWL and SWRL (Semantic Web Rule Language)
- Performs reasoning by the Pellet engine
- Presents results of the reasoning process on a graph

## **Graph-based Editor (2)**

- Each graph consists of nodes (classes/objects/values) and edges (relations)
- Each type of node is represented in different colour and shape
- Two kinds of ontology visualization: trees (taxonomies of classes and properties) and graphs
- Rules can be created visually and executed
- Reasoning process modifies all graphs and trees (if applicable)
- Graph structure can be manipulated by using specialized layouts or by manual rearrangement

## **Graph-based Editor (3)**

| Element                                         | Graph-based representation       |
|-------------------------------------------------|----------------------------------|
| OWL Class                                       | Son                              |
| OWL Class instance                              | Sister(F31)                      |
| Object property between two OWL instances       | hasChild Sister(F31) Mother(F21) |
| Datatype property between an object and a value | hasAge Person(?x)  18            |

6

## **Demo Time!**

## **Family Relationships Ontology**

- We modified an ontology developed by Christine Golbreich
- The ontology contains the usual classes (Person, Man, Woman etc.) and relationships within a family (hasConsort, hasChild, hasParent, etc.)
- Moreover, it contains also a number of SWRL rules
- We added some classes, relations and rules
- We introduced a set of instances

### Family Relationships Ontology - Instances



### Family Relationships Ontology - Rules

```
Person(?x), Person(?y), Person(?w),
Person(?z), hasParent(?w,?z), hasParent(?x,?y),
hasSibling(?y,?z)
hasCousin (?x,?w)
Person(?x), Person(?y), Person(?w),
hasGrandparent(?x,?y), hasFather(?y,?w)
hasGreatGrandfather (?x,?w),
GreatGrandfather(?w)
```

#### **Conclusions and Future Work**

- Our tool integrates ontology, rules, and data in a graph-based representation and supports reasoning by the Pellet engine
- All elements are represented on a directed graph
- Creation of SWRL rules is simpler than usual
- Graph-based representation is very intuitive, easy-tounderstand and easy-to-use
- We will extend our tool to support:
  - Queries execution with graphical answers,
  - Database interface,
  - OWL 2 RL and QL Profiles
  - Ontology creation and modification

# THE END

Thank you for your attention!

#### Demo presentation and download at

http://draco.kari.put.poznan.pl/ruleml2013\_SWRLEditor

