
UniLFS: A Unifying Logical Framework for

Service Modeling and Contracting

RuleML 2103: 7th International Web Rule Symposium

July 11-13, 2013

Dumitru Roman1 and Michael Kifer2

1SINTEF / University of Oslo, Norway
2State University of New York at Stony Brook, New York, U.S.A.

dumitru.roman@sintef.no, kifer@cs.sunysb.edu

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

2

Outline

• Context and motivation: Automated service contracting

• UniLFS: Modeling and reasoning about service behavior

for automated service contracting

– Elements of service contracts

– Expressivity of the modeling language for service contracts

– Reasoning technique for service contracting

• Related work

• Conclusions and outlook

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

3

Tasks to be automated when dealing with Services

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

4

Automated service contracting

• Overall aim: Automate service contracting
– Problems with traditional service contracting

• High costs for contract establishment and management

• Slow for rapidly changing business situations

– Automated service contracting can potentially
• Lower contract establishment and management costs

• Speed up and improve contract establishment and management

• Current status: Limited expressivity of modeling
frameworks and lack of sound and complete contract
establishment techniques

• General approach
1. Focus on those aspects of contracting that constrain interactions

in processes

2. Define the conceptual framework

3. Formalization, representation, and reasoning

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

5

Service contracting – overview and objectives

Main objectives:

1. An expressive language for contracting
– Service choreography

– Service policies

– Client contract requirements

2. A reasoning mechanism to decide if service contracting is possible

Service Contract = Choreography + Service Policies + Client Contract Requirements

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

6

Service contracting – example overview

Is this contract’s execution

possible?

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

7

UniLFS – A language for service contracts

• Aim

– An expressive representational framework for service contracts:

combining procedural and declarative aspects

• Common requirements

– Service choreographies

• Conditional control flow: Sequential, concurrent, non-deterministic, and

iterative interactions

• Data flow: Local and non-local data passing between interactions

– Service Policies and Client Contract Requirements

• Temporal, conditional, and data constraints

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

• Tasks: Task atoms and task definitions (hierarchical representations)

• Composition of tasks: Sequential, concurrent, non-deterministic, and

conditional

• Data passing between tasks

– Data-passing through shared arguments is possible between a task and its direct

successors, or within the definition of a composite task

– Data-passing through shared data space is used when passing data is not

possible through shared arguments due to the difference in scope of the

arguments

8

Modeling service choreographies

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013Example

9

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

10

Modeling policies as constraints

• Existence constraints

• Serial constraints

• Complex constraints – if C1 and C2 are constraints, then

so are

– C1 and C2

– C1 or C2

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013Example

11

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

12

12

The Problem of Service Contracting and Enactment

• Service contracting: Decide if the contract is satisfiable

• Service enactment: If it is, find an enactment

Is this contract’s

execution possible?

Service choreography

What is the actual order of

interactions if service

contracting is possible?

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

13

Solution overview

1. Concurrent Transaction Logic (CTR) – our formalism for

• Choreographies

• Service policies

• Client contract requirements

2. Extend CTR when necessary

3. Prove correctness

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

14

Short introduction to CTR

• Why CTR?

– Logic for specification and execution of transactional processes

– Integrates queries, updates, and transaction composition

– Has proof procedure for concurrent Horn formulas: proof =execution

– Can express a wide variety of constraints

– Has been applied in the area of workflow verification and scheduling with
promising results

• Atomic CTR formulas: same as in classical logic

• More complex formulas: built using connectives
a b, a | b, a /\ b, a \/ b, ¬a, a

a

c

d

e
f

g

b

and

or

Subproc

Process

Process a (b | Subproc) g

Subproc (c (d (e f)))

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013
Graphical representation of a service

choreography in UniLFS

15

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013
Graphical notation for constraints in

UniLFS

16

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

17

More examples of constraints that can be

captured in UniLFS

• if p is executed, then q must also execute (before or after q)

• if p is executed, then p must also be executed, and vice versa

• every occurrence of task p must be followed by an occurrence of task

q with the same argument and there must be an occurrence of p

before every occurrence of p and their arguments must be the same

• if task p is executed then q must execute after it, and before that q

there can be no other p

• if task q is executed, it has to be preceded by an occurrence of p; the

next instance of q can execute only after another occurrence p

• tasks p and q must alternate

• …

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

18

Service contract formalization with CTR – Example

/\

ConcurrentHorn /\ Constraints

…

…

…

…

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

19

Contributions

• Prior work

– Original CTR proof theory does not handle constraints

– Prior work added simple constraints, but

• No iterative processes

• No constraints on iterations

• No data flow

• New

– Add the necessary modeling primitives

– Extend the CTR proof theory to handle service contracting with

iterations, data flow, constraints, etc.

• As a result

– Can capture much of BPMN and WS-BPEL process modeling,

extend them with declarative constraints

– And contracting over them

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

20

Reasoning about service contracts with CTR

• Contracting: Find out if an execution of the CTR formula

Choreography /\ Policy /\ ClientRequirements exists

• Enactment: Find a constructive proof for this execution

Main result: The extended inference system is sound and

complete for proving the above

– Soundness: Every found execution is correct

– Completeness: All possible executions can be found

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

21

Extended proof theory – An overview

• Sequent:

– Meaning: can execute starting at state s given P in such a

way that C is satisfied

• Each inference rule looks like this:

For example:

• Has seven inference rules and one axiom

sequent1
sequent2

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

22

Related Work

• E-contracting

– Pieces of frameworks, models, architectures and different aspects and

phases of e-contracting (negotiation, enforcement, violation detection,

monitoring, legal aspects), but no unifying formalism

– We provide a unifying and general framework for e-contracting

• Workflow/process modeling

– Most languages are procedural (WS-BPEL, BPMN, YAWL).

The declarative ones (DecSerFlow) are inexpressive

– Our framework: very expressive. Integrates conditional control flow, data

flow, hierarchical modeling, and complex constraints

• Process verification

– Most of the existing approaches use temporal logic/model checking. No

obvious way to handle certain aspects: data flow, hierarchical modeling

– We use CTR. More natural modeling language. Sometimes has better

complexity.

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

23

Conclusions and Outlook

• UniLFS summary

– Identified main element of service contracts and formally

formulated the problem of service contracting

– Modeling: Developed an expressive representational framework

for service contracts, combining procedural and declarative

elements

– Reasoning: Developed a sound and complete proof theory for

deciding if contracting for a service is possible

• Future work

– Semi-automated extraction of UniLFS specifications from text

(e.g. contracts)

– Complexity study, e.g. subsets of constraints for which the

verification problem has a better complexity

– Implementation

RuleML 2013 – Dumitru Roman & Michael Kifer

RuleML 2013

24

Thank you!
? \/ !

