UniLFS: A Unifying Logical Framework for
Service Modeling and Contracting

RuleML 2103: 7th International Web Rule Symposium
July 11-13, 2013

Dumitru Roman? and Michael Kifer?

ISINTEF / University of Oslo, Norway
2State University of New York at Stony Brook, New York, U.S.A.

dumitru.roman@sintef.no, kifer@cs.sunysb.edu

Outline RuleML 2013

« Context and motivation: Automated service contracting

* UniLFS: Modeling and reasoning about service behavior
for automated service contracting
— Elements of service contracts
— Expressivity of the modeling language for service contracts
— Reasoning technique for service contracting

 Related work
 Conclusions and outlook

RuleML 2013 — Dumitru Roman & Michael Kifer

Tasks to be automated when dealing with Services RuleML 2013

i Describe service

"'-'“‘n formally .

R, -- Publish service
description

Involce &
Monitor services Service

Description

Service
Enactment &
Monitoring

Service
Publishing

Locate
services
Service e i
Conabine . s L T
services Nﬂgﬂtlﬂtlﬂll & TTE=sIIIIIIIIIIO Choosze se1vice,

Contractine \\‘ agree ondetails /!

RuleML 2013 — Dumitru Roman & Michael Kifer

Automated service contracting RuleML 2013

« Overall aim: Automate service contracting

— Problems with traditional service contracting
High costs for contract establishment and management
Slow for rapidly changing business situations

— Automated service contracting can potentially
Lower contract establishment and management costs
Speed up and improve contract establishment and management

« Current status: Limited expressivity of modeling
frameworks and lack of sound and complete contract
establishment techniques

* General approach

1. Focus on those aspects of contracting that constrain interactions
In processes

2. Define the conceptual framework
3. Formalization, representation, and reasoning

RuleML 2013 — Dumitru Roman & Michael Kifer

Service contracting — overview and objectives RuleML 2013

Service Contract = Choreography + Service Policies + Client Contract Requirements

Service
Provider
Service Behavior f T TN
Reasoner Service
_ |Choreography
Client : »
Contracting |
- — =
Contract > Enactment |
rcquircmcntsr |
- J
= = |
|
(A
\ Service
Policy
- - - . -/) |
Main objectives: > J

1. An expressive language for contracting
— Service choreography
— Service policies
— Client contract requirements

2. A reasoning mechanism to decide if service contracting is possible

RuleML 2013 — Dumitru Roman & Michael Kifer

Service contracting — example overview

RuleML 2013

Service
Provider
. . — T TN
Service Behavior [Service
Reasoner |Choreography

Client

Al Contracting
| Contract

l:l (i)
Service
\
\
\

Policy

\
AN

Is this contract’s execution
possible?

Client contract requirements
4. All items in the same order must be shipped at the same time.
5. If full payment is chosen by the client, then it must happen only
after all purchased items are delivered.
6. Before the client purchases items, the service must book a shipper.

o (Orderi) —
— —
place_order | _— handle_shippers g lend order
(Orders Price) [———LAND (Order#) {(Orders)
" u[handle_payment
(Qrrderis Price)

handle_items*(crders) manage_item™ (Orderd, ftem) - —
: R = _mfnrmiclmnt
/4 select_item manage_item®) hand! lejlemi'& \ Ordderth, Prodicer, liem]
!

(Orderd. fiem) (OrederiTtem) (Orger#)
OR.

OR

contact_producer
(Oroder, Proucer, fiem)

manage_item®
(Orders, isem)
prodiicerliem, Producer)

v |
[Orderts, Hem] — [Ordf, ln] OR)

handle_shippers*(o-in _
‘manage_shipper (Shigper, Ordit)

Kords Shipper, i) i |)\

|

B |
contact_shipper _—T0R handle_shippers
(Ot Shipper) G2}
or ¥

inform_client (@rdert, Producer, fem)

handle_payment (Onders Price)

pay
iy
<JoR
| pAYment_guarantee
_ Ordert, Crodictl)

PAaY (Orderi)

Tull_payment
Orderil)

pay_per_item”
(Crderd)

accept_producer (Ordert, Produces)
accept
Grdert, Producer

—

inform_availability
(Qredev# Producer.liem)
itemAvailable(Order#, Praduces, leim)

\
|
O J

(]::)'_per_ihm‘ (Ordert) .
N pay_per_item”| itemUnavailabie(Orders, Prodicer, liem) _—
N / [Orderil) {Orderl Tnform_unavailability|—
~ \ ok » (Order® Prosucer,ltem;

Service policy

1. A shipper is booked only if the user accepts at least 7 items.

2. If pay per item is chosen by the user, then the payment must
happen immediately before each item delivery.

3. Payment guarantee must be given before the client is informed

about the availability of items.

UniLFS — A language for service contracts RuleML 2013

 Aim
— An expressive representational framework for service contracts:
combining procedural and declarative aspects

« Common requirements

— Service choreographies

» Conditional control flow: Sequential, concurrent, non-deterministic, and
iterative interactions

« Data flow: Local and non-local data passing between interactions

— Service Policies and Client Contract Requirements
» Temporal, conditional, and data constraints

RuleML 2013 — Dumitru Roman & Michael Kifer

Modeling service choreographies

RuleML 2013

« Tasks: Task atoms and task definitions (hierarchical representations)

task name
largarg{]l

[t

Q

ask name (urg,....,frrgﬂ}]

« Composition of tasks: Sequential, concurrent, non-deterministic, and
conditional

task ,|

)-Easkn

AND

tasky

« Data passing between tasks

— Data-passing through shared arguments is possible between a task and its direct
successors, or within the definition of a composite task

— Data-passing through shared data space is used when passing data is not
possible through shared arguments due to the difference in scope of the
arguments

Las k,\

(arg,,f:rg)n}

ta skB

(arg,urgh]l

.f“t

larg ,..arg | — [arg,...arg |

RuleML 2013 — Dumitru Roman & Michael Kifer

task,|
< > —condition—
tasky

task, tasky
(arg, arg,) |(arg,,arg,)
: A
[arg ... urgﬂ}j sfarg,,.. .,;rrgﬁl,i'

task |

Example

RuleML 2013
handle_iterns
____,a—"’:r { Cedderi x“‘-u._h
—— _ T
place _order | —" | handle_shippers “—a|end _order
[Orders Price) | L AND [Ordlert) {Crder#)
T |handle_payment :
{Crderil, Price)
handle items*{ovder) manage_item™®| Orderll ftem) - -
- - inform_client
select_item| |manage item* _|handle_items* (Order#, Producer liem}
/ [Chrderti ftem) [Cwders ftem) (Order#) &
L0 ' » contact_producer | \OR pymanage_item™
" (Chredert Producer, ftem) (Ohrder#, ltem)
|
praducer{ltem, Producer) |
[Cwrdertl, lem] — [Ordil, fim] A_}R j
/" handle_shippers*(aras) _ ™
T manage_shipper (Shisper, Ordd)
— S) .o ook _shipper o | deliver
handle_payment (Orders Price) P\ Ords hipper o] | (Ordt \
pay — \
P i - I .
o [Crderi) contact shipper —%0R ,"j handle_shippers*
i:i'-":'l (Chrald Shipper) ()
| PAYMENT_guarantee &
{Crdert, Creditiy \ OR 'f/
fpa}. (Crdder) /I‘:rl,l Fl11_l.‘.|il.: ni [{.i'.l'q'.g'rll_J‘ropl'un:‘rr_.".‘r.rw]
full_payment
=~ d
(Drcderifl
ﬂ_,_,_,-o—"" { Chrader
O
pay_per_ilem®

HCE-EPt_Fde'I.ICEI" {Orderd, Prodhicer)
accept
inform_availability =7 [Crdert, Pracicer \
(Ordevd Progucer fiem) DR
[Cirderd) , / |
A /} reject \
stemAvailalblefOvderf, Producer, ltem COrgderil Producer |I
' P
pay_per_item™ {Jrderd) @F‘
payv_one_item - pay_per_item® item Unavailable(Orderd, Producer, Jem)
/ {Crderil) {Crderll) \
\ < LOR. »
RuleML 2013 — Dumitru Ro

& Michael Kifer

_,-'-""'-FFF
inform_unavailability [—
{hrders Producer, ffem)

Modeling policies as constraints

RuleML 2013

Existence constraints e | taskiags
tas k[[:l.-i rgs) 'Iasi;.:gs;

Serial constraints

task,iArgs,)

taskpiAresy)

afler
task, (Args,) bhefore — taskg(Argsy) task ,(Argss,) t t;:twiun. task , (Args o)
tﬂﬁkhfhrgﬁﬁ} — blocks — 'Hsku{hrgs“} ASKp(Argsy)
task (Args,) —right-after—s| taskg(Argsy) task ,(Args,,) mothelween | task, (Args,;)

task (Args,)

—right-before—+|

tasky(Argsy)

taskg(Args,)

task,(Args,) Fnot-right-after—= tASKg(Aresy)

« Complex constraints — if C1 and C2 are constraints, then
SO are
— ClandC2
— ClorC2

AND
OR
1:151':[“;: Y[e taskg(Argsy) I.o* ——__1 Kg(Ar
T — afie as ATEE
ALATES) 'IilSkA(.-'\rgs_,\} after glATES,)
3
a taske(res) [—before
taskc(Argso) before piAresy)

RuleML 2013 — Dumitru Roman & Michael Kifer

AND

E I #]|———HOR
xample D
06 0
accept book_shipper —
{Ordert,) i
7 _
accept aller = hq.ﬁkFSIP]ppﬂr
{Order#,) (e
Service policy #2 OR
1. A shipper is booked only 1f the user accepts at least 7 items. 0

pay_per_item
il

]

. I pay per 1tem 1s chosen by the user, then the payment must
happen immediately before each item delivery.

3. Payment gnarantee must be given before the client 1s informed

about the availability of items.

pay_one_item right_befioe o deliver
{Order#) {Circlerit)

)) #3 payment_guarantee hefore o INTOTmM_client
Client contract requirements {Order#,) {Orders, ,)
4. All items in the same order must be shipped at the same time. 14 |
5. If full payment is chosen by the client, then it must happen only deliver
after all purchased 1tems are delivered. -,
6. Before the client purchases items, the service must book a shipper. #5 OR

I]

full_payment
[

AND

deliver hefore Tull_payment
Orrders (Orrder#)
full_payvment _ | deliver

6 book_shipper pay
(Ord#, .) Lol T 1ovdsy

RuleML 2013 — Dumitru Roman & Michael Kifer

The Problem of Service Contracting and Enactment rulemL 2013

« Service contracting: Decide if the contract is satisfiable

« Service enactment: If it is, find an enactment
/ Service choreography \
What is the actual grder of
intSrUAGN e Dice
cEMRSLHAY ROSSRRe?
Client t t requi it Servi li
4. All items inlillllc ;aillcrc?r(c:lcrl E:::;irﬁgj:ilpgcd at the same time. LA shipper is hﬂ{fk€§l:ri;:)?iffh'l3ciﬂ‘ accepts at least 7 items.
5. If full payment is chosen by the client, then it must happen only 2. If pay per item s chosen by the user, then the payment must
after all purchased items are delivered.

happen immediately before each item delivery.

3. Payment guarantee must be given before the client is informed
about the availability of items.

6. Before the client purchases items, the service must book a shipper.

RuleML 2013 — Dumitru Roman & Michael Kifer

Solution overview RuleML 2013

1. Concurrent Transaction Logic (CTR) — our formalism for
* Choreographies
« Service policies
 Client contract requirements

2. Extend CTR when necessary
3. Prove correctness

RuleML 2013 — Dumitru Roman & Michael Kifer

Short introduction to CTR RuleML 2013

. Why CTR?

Logic for specification and execution of transactional processes
Integrates queries, updates, and transaction composition

Has proof procedure for concurrent Horn formulas: proof =execution
Can express a wide variety of constraints

Has been applied in the area of workflow verification and scheduling with
promising results

« Atomic CTR formulas: same as in classical logic

« More complex formulas: built using connectives
a®b,alb,aNb,aVb, -a, ©a

Process < a® (b | Subproc) ® g

Subproc « (c®(dv (e ®f))) =

RuleML 2013 — Dumitru Roman & Michael Kifer

Graphical representation of a service
choreography in UniLFS

RuleML 2013

task name Task atom:
arg,....arg} task_name(arg ,...arg) task, tasky | Non-consumable data passing using
(arg,arg (arg. ...arg, | Shared database w s n=n nnes
task_name (argarg) L T «.‘ b .
Task definition: tasky(arg ...arg, W insertnewPrediarg . arg
task_name(arg ...arg) «— i ol and

larg,,...arg | — [arg,....arg, | nr*»vPrfd_fa.r},?R_,....a.rgyl'xg'iuskn (arg, .t}

ED

Concurrent execution:
task, | tasky task, tasky Consumable data passing using

askp
b (arg,..arg, (arg, ,...arg,) shared database (x <a<a=an cn<n-n,
m 4 laﬁklt[arg_ﬁ arg_m}'g fﬂ.tfﬂ.ne"z.'.f‘r{'dfurg“ z.rJ"j_.rdH'I
C . et aind

Non-geterminighic execution: Jargﬁ...,argﬁ_j - g’argm_ mg.v,-'ll ift'-'m‘r.nr'r'.'Prrdl"ur.l-fg.,....ur.l.’,.-'g tasky [arﬁn.,---,ﬂrﬁg-.:‘
task, \/ taskg ; L ! .

fasky

ask Sequential execution; - p— Conditional execution:
! task, G0 tasky —condition $ cundition@taskﬁ

RuleML 2013 — Dumitru Roman & Michael Kifer

Graphical notation for constraints in

Un | LFS RuleML 2013
n.* task ,(Arss,) fle o taskpiAresy) | affer(task (A —— taskgiAr
task(Args) atleast (taskiArgs)) AT e pesn) | affer(S m(Aresy)
- task, (Args,) before —=| tasKg(Argsy) | before(task y(Args,) - taskgiArgsy))
taskiAres) absence(taskiArgs)) task (Args,) — blocks —»f taskgiArgsy) | blocks(task ,(Args,) - — taskg(Args,))
task?nrgs} exactly (task(Args)) task, (Args,) —right-after—s{ taskg(Argsy) | right-affer(task, (Args,) — taskg(Ares,))
- task (Args,) —right-before—s| tasKg(Argsy) | right-before(task(Args,) . taskglArgsy))
Il
1-H.Sk['ﬂIgS} ﬂfmr_}.’;‘fn[tﬂSk{fﬂ‘Eﬁ}} tﬂ.ﬂkh{f‘nlgﬂﬁ} _Clll:lt-t’ight-ﬁﬁlil‘_"' 1ﬂ$kﬂ{ﬁfgﬁn:l Ht]f—?};ﬂ}?f—gﬁﬂ?{tﬂﬁ:kﬁIf.-‘"l.l‘g:i_,n‘jl o tH!I:{RI:.-"'Lt’gSR_:I)

hetween

task,(Args,) ~ tasky (Args,o)| between(task (Args,,) - — taskg(Argsy) — —task (Args,.))
| taskp(Argsy)

not-hetween

task,(Args,) s task,(Args,,)| not-between(task, (Args,,) - — taskgiAsgs;y) — - task(Args,)

| taskg(Arzs,)]
AND
l.n* — afler 15151&3{!\1"9,5”)
task,(Args,) Conjunctive composition
= atleast (task,(Args,)) N\ after(task(Args,) - — taskg(Argsy)) N\ exactly (taske(Argsc))
taskq(Arps.)
GR P . PR
o Disjunctive composition
ta sk‘,;(Args) [after taskgiArgsy) (atieast (task,(Args,)) N\ affer(task y(Args,) - tasKg(Argsy)))
fask e (Ars) | —before tasky(Argey) \/ before(taskp(Argsy) - - tasKe(Args)

RuleML 2013 — Dumitru Roman & Michael Kifer

More examples of constraints that can be
captured in UniLFS

RuleML 2013

« If pis executed, then g must also execute (before or after q)
« if p is executed, then p must also be executed, and vice versa

« every occurrence of task p must be followed by an occurrence of task
g with the same argument and there must be an occurrence of p
before every occurrence of p and their arguments must be the same

« if task p is executed then q must execute after it, and before that g
there can be no other p

« if task g is executed, it has to be preceded by an occurrence of p; the
next instance of g can execute only after another occurrence p

« tasks p and g must alternate

RuleML 2013 — Dumitru Roman & Michael Kifer

Service contract formalization with CTR — Example

handle_items
— { Chrdderil) H"'\-h..___

[Orderdl, Price)

place order | _——7 o | handle shippers B
[Ovaler® Price) [——LAND o (Orderd) ?‘
| handle _payment

ConcurrentHorn /A Constraints

end_order
[Cheder#)

handle items*|Orders)

select item| . |manage item™
| » |

handle_items*
_h. —
[rdlers ftem) {Order#)

N

/ [Chrderid ltem)
1OR, ;

-

IAND
TOR
AND
0.6 0
accept book_shipper
(Order#t,) [
7.* -
accept —afier—s| ht:gkd_s;‘:_nppcr
(Order#,) (Order#,_,)
TIOR
0
pay_per_item
]
pay_one_item . - deliver
T|payment_guarantee before—s| INfOrm_client
(Ordertt,_) (Ordertt,_,_)

RuleML 2013 — Dumitru Roman & Michael Kifer

place_order(?Order#, 7 Price) &
(handle_items(?Order#t)

| handle_shippers(TOrderdt)

| handle_payment(?Order4t, 7Price)) &
end_order({?Order#)

handle_items({7Order#t) «
(select_item(7Order#, Ttem)@
insert.selected_itemn(TCOrder#, TTtem)®
manage_item(?Order#, 7tem)®
handle_items{7Order#))
handle_items({70rder#) « state

N

. (atmostg(accept(_Order#,_)) A absence(book _shipper(_,_,_)))

v (atleastr(accept(_Order#,_))
A after(accept(_Order#,) -» book_shipper(_Order#,_,_))
where atmost,(p) is a shorthand for
absence(p) v exactly, (p) v exactly,(p) v ... v exactly, (p)

. absence(pay_per_item(_))

v right_before(pay_one_item(_Order#) < deliver(_Order#))

. before(inform_client(_Order#,_,_) «- payment_guarantee(_Order#,_))

RuleML 2013

Contributions RuleML 2013

Prior work
— Original CTR proof theory does not handle constraints

— Prior work added simple constraints, but
* No iterative processes
» No constraints on iterations
* No data flow

* New
— Add the necessary modeling primitives
— Extend the CTR proof theory to handle service contracting with
iterations, data flow, constraints, etc.
As aresult

— Can capture much of BPMN and WS-BPEL process modeling,
extend them with declarative constraints

— And contracting over them

RuleML 2013 — Dumitru Roman & Michael Kifer

Reasoning about service contracts with CTR RuleML 2013

« Contracting: Find out if an execution of the CTR formula
Choreography /A Policy /A ClientRequirements exists

« Enactment: Find a constructive proof for this execution

Main result: The extended inference system is sound and
complete for proving the above
— Soundness: Every found execution is correct
— Completeness: All possible executions can be found

RuleML 2013 — Dumitru Roman & Michael Kifer

Extended proof theory — An overview RuleML 2013

« Sequent: P,s-— (Y aC

— Meaning: (3) ¥ can execute starting at state s given P in such a
way that C is satisfied

sequent,
sequent,

« Each inference rule looks like this:

For example:
P,s —~(3)v'onlC
P,s —-(3)yYaC

« Has seven inference rules and one axiom

RuleML 2013 — Dumitru Roman & Michael Kifer

Related Work RuleML 2013

« E-contracting

— Pieces of frameworks, models, architectures and different aspects and
phases of e-contracting (negotiation, enforcement, violation detection,
monitoring, legal aspects), but no unifying formalism

— We provide a unifying and general framework for e-contracting

» Workflow/process modeling
— Most languages are procedural (WS-BPEL, BPMN, YAWL).
The declarative ones (DecSerFlow) are inexpressive
— Our framework: very expressive. Integrates conditional control flow, data
flow, hierarchical modeling, and complex constraints
* Process verification

— Most of the existing approaches use temporal logic/model checking. No
obvious way to handle certain aspects: data flow, hierarchical modeling

— We use CTR. More natural modeling language. Sometimes has better
complexity.

RuleML 2013 — Dumitru Roman & Michael Kifer

Conclusions and Outlook RuleML 2013

e UnILFS summary

— ldentified main element of service contracts and formally
formulated the problem of service contracting

— Modeling: Developed an expressive representational framework
for service contracts, combining procedural and declarative
elements

— Reasoning: Developed a sound and complete proof theory for
deciding if contracting for a service is possible
* Future work

— Semi-automated extraction of UniLFS specifications from text
(e.g. contracts)

— Complexity study, e.g. subsets of constraints for which the
verification problem has a better complexity

— Implementation

RuleML 2013 — Dumitru Roman & Michael Kifer

RuleML 2013

Thank you!
? V!

RuleML 2013 — Dumitru Roman & Michael Kifer

