Computing the Stratified Semantics of Logic Programs over Big Data through Mass Parallelization

Ilias Tachmazidis, Grigoris Antoniou
University of Huddersfield, UK
Motivation: The Challenge of Big Data

- **Big Data**: Huge data set coming from
 - the Web, sensor networks and social media
- **Applications**: e.g. smart cities, intelligent environments, information extraction
- **The challenge**:
 - Scaling up to big data is not trivial
 - New approaches, new algorithms
- **Opportunities for Knowledge Representation**
 - Decision making
 - Decision support
 - Data cleaning
 - Inferring high-level knowledge from low-level input
Outline

- Motivation
- MapReduce paradigm
- Logic programming example
 - Joins
 - Anti-joins
- The power of stratification
- Experimental Results
- Future Directions
The Big Data Challenge for Reasoning

- Big Data poses significant computational challenges
 - Focus has to be not just complex knowledge structures, but their efficient processing in combination with huge amounts of data

- In particular for Knowledge Representation (KR), centralized in-memory solutions (the traditional KR approach) do not scale to the Big Data challenge:
 - Billions of facts result in over 20GB of data
Parallelization approaches:
- Rule decomposition
- Data decomposition

Allows for efficient reasoning on large data sets
- 100 billion triples
- Datalog (e.g. Afrati & Ullmann)
- RDF/S (e.g. Weaver & Hendler)
- OWL dialects (e.g. Urbani et al.)
All previous works addressed consistent sets of rules

In practice, big data is messy and often inconsistent

A type of non-classical reasoning, called **nonmonotonic reasoning**, supports reasoning
- To deal with inconsistencies that arise naturally in the Web context
- To deal with deficient (sensor) data
- To reason with missing (incomplete) information

Apply MapReduce paradigm to nonmonotonic reasoning
MapReduce Paradigm

- Inspired by similar primitives in LISP and other functional languages
- Operates exclusively on <key, value> pairs
- Input and Output types of a MapReduce job:
 - Input: <k1, v1>
 - Map(k1,v1) → list(k2,v2)
 - Reduce(k2, list (v2)) → list(k3,v3)
 - Output: list(k3,v3)

Part 2: MapReduce Paradigm
MapReduce Framework

- Provides an infrastructure that takes care of:
 - distribution of data
 - management of fault tolerance
 - results collection

- For a specific problem:
 - developer writes a few routines which are following the general interface
Models both “join” and “anti-join” operations from database

Example:
Facts:
parent(John, Alice), parent(John, Jill), sibling(Alice, Edward), sibling(Jill, Mary), female(Mary)

Rule:
son(X,Y) ← parent(Y,Z), sibling(Z,X), not female(X)

parentOfSiblings(Y,X,Z)

Part 3: Logic programming example
Negative Rule Calculation (2/5)
“Join”

INPUT
Facts in multiple files

File01

pARENT(John, Alice)
pARENT(John, Jill)
sibling(Alice, Edward)

File02

sibling(Jill, Mary)
female(Mary)

MAP phase Input

Key: position in file (ignored)

Value: fact

- <key, parent(John, Alice)>
- <key, parent(John, Jill)>
- <key, sibling(Alice, Edward)>
- <key, sibling(Jill, Mary)>
- <key, female(Mary)>

Part 3: Logic programming example
Negative Rule Calculation (3/5):
“Join”

MAP phase Output

- <Alice, (parent, John)>
- <Jill, (parent, John)>
- <Alice, (sibling, Edward)>
- <Jill, (sibling, Mary)>

Part 3: Logic programming example
Reduce phase Input

\[<\text{Alice}, <(\text{parent}, \text{John}), \text{(sibling, Edward)}>) > \]

\[<\text{Jill}, <(\text{parent}, \text{John}), \text{(sibling, Mary)}>) > \]

Reduce phase Output

Output: new conclusion

\[\text{parentOfsiblings(John, Edward, Alice)} \]

\[\text{parentOfsiblings(John, Mary, Jill)} \]
Rule:
son(X,Y) ← parent(Y,Z), sibling(Z,X), not female(X)

Join
parentOfSiblings(Y,X,Z)

female(Mary)
parentOfSiblings(John, Edward, Alice)

Anti-join
son(Edward, John)
Stratified Semantics (1/2)

- son(X,Y) ← parent(Y,Z), sibling(Z,X), not female(X)
- female(x) ← human(x), not male(x)
Part 4: The power of stratification
Experimental Setup

- Measure **scalability** in terms of:
 - Number of nodes (computers in the cluster) maximum parallelization possible
 - Number of facts
 - Number of rules

- Used a synthetic dataset:
 - up to 1 billion facts
 - up to 128 rules
Experimental Results (1/2)
parallelization factor of 8: linear performance

![Graph showing the relationship between time in minutes and millions of facts processed for 1, 2, 4, and 8 nodes.](image)
Experimental Results (2/2)

parallelization factor of 8: linear performance up to 64 rules
Computed the stratified semantics over Big Data
Ran experiments for various
- data sizes
- rule sizes
Demonstrated that reasoning can scale well up to 1 billion facts
Future Work

- **Beyond stratification**
 - What happens is we do not have this nice structure
 - Solve the problem by allowing dependency cycles

- **Beyond MapReduce**
 - We will study more complex NMR approaches, including ontology evolution/repair and Answer-Set Programming
 - We believe that MapReduce is not well placed to support this kind of approaches: they are probably not “embarrassingly parallel”
Thank You!
Experimental Results

![Graph showing time in minutes vs. join percentages for 8 Nodes. The graph exhibits a linear trend with time increasing as join percentages increase.]